
Robotic Grasping and Placement Controlled by EEG-Based Hybrid
Visual and Motor Imagery

Abstract— We present a framework that integrates EEG-
based visual and motor imagery (VI/MI) with robotic control
to enable real-time, intention-driven grasping and placement.
Motivated by the promise of BCI-driven robotics to enhance
human-robot interaction, this system bridges neural signals
with physical control by deploying offline-pretrained decoders
in a zero-shot manner within an online streaming pipeline.
This establishes a dual-channel intent interface that translates
visual intent into robotic actions, with VI identifying objects
for grasping and MI determining placement poses, enabling
intuitive control over both what to grasp and where to place.
The system operates solely on EEG via a cue-free imagery
protocol, achieving integration and online validation. Imple-
mented on a Base robotic platform and evaluated across diverse
scenarios, including occluded targets or varying participant
postures, the system achieves online decoding accuracies of
40.23% (VI) and 62.59% (MI), with an end-to-end task success
rate of 20.88%. These results demonstrate that high-level
visual cognition can be decoded in real time and translated
into executable robot commands, bridging the gap between
neural signals and physical interaction, and validating the
flexibility of a purely imagery-based BCI paradigm for practical
human–robot collaboration.

I. INTRODUCTION

Recently, robotic technologies have achieved remarkable
progress in end-to-end grasping and manipulation [1], [2],
[3]. Modern robots, empowered by deep learning and ad-
vanced control algorithms, can recognize objects, plan com-
plex motions, and interact dynamically with real-world envi-
ronments [4], [5], [6]. However, they still struggle to interpret
and execute commands derived from human high-level inten-
tions [7], [8], such as natural language instructions, context-
dependent requests, and multimodal cues. In contrast, over
the past two decades, low-level robotic capabilities have
matured significantly, enabling reliable perception, motion,
object manipulation, and basic action execution. Conse-
quently, bridging these robust low-level skills with high-
level cognitive processes that reflect human intent remains
a central challenge.

To address this challenge, studies have explored combining
cognitive signals with robotic control. Early approaches used
explicit cues, such as voice commands, hand gestures, or eye
tracking, to infer user intent and guide robot actions [9], [10].
More recently, brain–computer interfaces (BCIs) have been
integrated directly, allowing robots to interpret a user’s brain
activity related to object recognition or movement intentions,
without requiring physical or verbal input.

However, the integration of brain signals with robotic
actions remains in its early stages and faces significant
challenges. Most existing BCI-robot control systems rely

on constrained and explicit control signals such as event-
related potentials (e.g., P300), steady-state visually evoked
potentials (SSVEP) [11], or motor imagery (MI) [12]. While
effective in laboratory environments, these methods are often
restricted to predefined commands or simple actions (e.g.,
”move left” or ”move right”), making them ill-suited for gen-
erating complex, intuitive, and natural-intention-driven com-
mands for real-world physical interaction. This gap between
a user’s cognitive intent and the robot’s executable actions
remains a major challenge for the widespread adoption of
BCI technology [13], [14].

Recent advances in brain decoding, particularly with
electroencephalography (EEG), have increasingly targeted
higher-order cognitive states such as visual perception and
imagery [15], [16], [17]. EEG, as a non-invasive and portable
modality, shows promise in interpreting complex brain ac-
tivity. Nevertheless, most studies have focused on passive
observation and offline analysis, without directly translating
these rich cognitive signals into real-time robotic actions.
As a result, the potential of high-level visual cognition for
controlling robotic systems remains largely underexplored.

In this study, we present an end-to-end framework that
integrates high-level visual cognition with robotic control for
a pick-and-place task. As shown in Figure 1, our EEG-based
cognitive control pipeline first collects both visual imagery
(VI) and motor imagery (MI) data from five participants in
an offline setup to pretrain the corresponding decoders based
on the collected data. These pretrained decoders, selected
from widely used neural architectures, are integrated into the
robotic control system, where the VI decoder selects objects
for grasping and the MI decoder specifies placement poses.
The offline evaluation achieves average accuracies of 44.11%
for VI and 76.53% for MI, respectively. Motivated by the
offline results, we deployed the selected VI and MI decoders
in a zero-shot online setting on a dual-channel EEG system
for a pick-and-place platform. The overall system achieved
online decoding accuracies of 40.23% (VI) and 62.59%
(MI), with an end-to-end task success rate of 20.88%. These
results demonstrate a functional human-robot collaboration
by linking high-level visual cognition to actionable robot
commands, validating the approach in a practical online
scenario. We further tested the proposed pipeline in extended
scenarios, such as a supine setup where participants lay
down and controlled the robot using visual imagery, without
having direct sight of the physical objects. In summary, our
real-time framework enables human-robot collaboration by
translating visual imagery into higher-level intentions for
robotic action, and has been validated through an online
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Fig. 1: High-level cognitive control pipeline for EEG-based robotic manipulation. The framework consists of three
main components: (1) Offline EEG data collection: visual imagery (VI) and motor imagery (MI) EEG data are collected
and labeled to train visual and motor decoders. (2) Online EEG acquisition: A dual-channel system is deployed in which
VI-EEG is decoded into grasping intentions and MI-EEG determines placement positions, enabling real-time task-level
command generation. (3) Robotic control: the trained decoders drive a robotic arm to perform the grasp and place task in
real-world, demonstrating the seamless mapping from high-level visual cognition to physical manipulation.

application for practical use. Our main contributions are:
1) We propose and empirically validate a high-level cog-

nitive control paradigm as a natural-intention-driven
BCI grounded in visual imagery (VI), translating VI-
EEG signals directly into task-level robotic commands
for pick-and-place manipulation.

2) We develop a real-time framework that bridges brain
signals and robotic actions via a dual-channel intent
interface: VI-EEG decodes object intent and MI-EEG
infers target poses, achieving a seamless mapping from
high-level visual cognition to physical manipulation.

3) We perform end-to-end system integration and con-
duct online system validation, implementing functional
demonstration on a robotic platform, which achieves
precise real-world grasping and placement, and show-
cases advanced interaction capabilities.

II. RELATED WORKS
A. Visual Decoding from Brain Signals

Visual decoding from brain signals has become a rapidly
advancing field, with significant strides made in translat-
ing neural activity into interpretable visual information[18],
[19]. Early work relied on fMRI due to its high spatial
resolution, enabling reconstruction of simple and natural
images from voxel patterns, and coupled with the recent
integration of latent diffusion models improving semantic
fidelity [20], [21], [17]. However, its inherent cost, immo-
bility, and low temporal resolution limit its suitability for
real-time BCI [22]. In contrast, EEG/MEG offer unparalleled
temporal resolution in the millisecond range, with EEG
being particularly suitable for real-time and online BCI

systems [23]. Over the years, EEG-based decoding methods
have evolved from basic CNNs and temporal networks to
more complex architectures [24], including attention-based
and graph-augmented models [25], [26]. Some models also
incorporate alignment with large-scale vision and multimodal
datasets [27], [28]. However, most existing studies primarily
focus on offline classification and passive observation [29],
[30], often failing to connect decoded visual semantics to
actionable tasks in real-time scenarios. As a result, bridging
high-level visual imagery with actionable robotic commands
remains an ongoing challenge.

B. Robotics Control using EEG

Prevailing BCI-robot paradigms typically rely on P300,
SSVEP, or MI signals. While these methods are reliable in
controlled settings, they are limited by predefined commands
and often require the user to focus on flickering stimuli [31],
[32], [33], which diminishes naturalness and can lead to
user fatigue. Consequently, these approaches struggle to
facilitate intuitive, task-level interactions in more complex
and dynamic environments. Even in naturalistic settings, such
issues remain inevitable [7], [8]. For real-time BCI applica-
tions, approaches such as LDA, SVMs, and shallow neural
networks are often preferred due to their simplicity [34],
[35]. However, even more advanced techniques, including
pretrained neural networks, are typically restricted to offline
processing. Therefore, decoding zero-shot visual imagery
EEG into robotic grasping and placement actions is vital
for bridging the gap between laboratory-based BCI systems
and real-world applications, allowing for more intuitive and
natural interactions in diverse environments.
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III. DATA COLLECTION AND SYSTEM
CONFIGURATION

A. Participants
Five healthy graduate students (2 females; age 23–30

years; M=25.4, SD=2.97) from a university participated in
this study. All were right-handed with normal or corrected-
to-normal vision and hearing, and none reported neurological
disorders. Two participants had prior experience with EEG
experiments. Written informed consent was obtained and the
protocol was approved by the appropriate ethics committee.
Each participant received approximately $42 USD per exper-
imental session. All five participants completed the offline
experiments, and four further engaged in the online testings.

B. Task Paradigms
Offline data collection comprised visual perception (VP),

visual imagery (VI), and motor imagery (MI) tasks. This
study involved a single offline session, with continuous EEG
signal recording throughout the experiment.

Visual Perception (VP)& Visual Imagery(VI): Stimuli
were drawn from the public Fruit Images for Object De-
tection dataset, including three easily recognizable fruit cat-
egories (apple, banana, and orange). Each trial began with a
1-second fixation period marked by a central cross, followed
by a 2-second presentation of the target image (perception
phase). Participants were then instructed to press the space
bar to perform eyes-closed visual imagery of the presented
object for 5 seconds (imagery phase), a duration supported
by previous studies on visual imagery timing [16], [36]. The
imagery period ended with a 300 ms auditory tone (PsychoPy
default pitch “A”, approximately 440 Hz). After each trial,
participants reported their attentional engagement on a 10-
point scale (0 = not at all focused, 9 = fully focused). The
collected average attention level for each subject in each trial
of the VI task was 8.25 ± 1.02 (range: 0-9), indicating a high
attention during the study.

The VI task comprised 10 runs, each including 3 blocks
of 10 randomized trials. Short breaks (10 sec) were provided
between blocks, and participants rested for 1–2 min between
runs. Each run lasted approximately 6–7 min (30 trials),
yielding 300 trials in total (∼90 min).

Motor Imagery (MI): The MI protocol followed the BCI
Competition IV-2b design [12]. Each trial started with a 1-
second fixation period with the center cross, followed by
a 1.25-second directional arrow cue (left or right). A short
auditory warning tone (70 ms, approximately 440 Hz) was
presented 1 second after cue onset to prompt imagery initia-
tion. Participants then performed kinesthetic motor imagery
of the cued hand for 4 seconds, and a 200 ms auditory tone
signaled the end of the trial. Each trial was followed by a
1.5-second pause and a 1.5-second ITI, which allowed the
EEG signal to recover and reduced temporal overlap between
consecutive trials.

Each run consisted of 20 trials with balanced, randomly
intermixed left/right cues. Participants completed 5 runs (100
trials in total), with each run lasting approximately 3 minutes.
The entire MI session lasted 20–30 minutes.

Visual Imagery Paradigm

+

1.0s

Fixation

2.0s

Visual 
Perception

“space”

Prepare

1.0 - 2.0s 5.0s

Attn. ITI

1.0 - 2.0s 1.0s

Visual 
Imagery

Attention 
Assessment Rest

Motor Imagery Paradigm

+

1.0s

Fixation

1.25s

Cue

Imagine

4.0s

Pause ITI

1.5s1.5s

Motor 
Imagery

……
Attn.

Attention 
Assessment

Imagine

Fig. 2: Visual Imagery and Motor Imagery Paradigms.

The visual imagery and motor imagery paradigms are
shown in Figure 2. For each task, the phase triggers were
recorded by PsychoPy and transmitted to the EEG system,
marking the start and end of every phase. The total duration
of all offline sessions was approximately 2 hours.

C. Signal Acquisition and Preprocessing

EEG was recorded with a 64-channel Neuracle system (59
scalp EEG, 2 mastoid, 2 EOG, 1 ECG, 1000 Hz sam-
pling; 24-bit A/D resolution; ±0.003% accuracy; analog
input range ±5 V) on the NeuroHUB platform, keeping
electrode impedances below 10 kΩ. Stimuli were presented
on a 24.5-inch, 100 Hz monitor at a 50–70 cm viewing
distance. Preprocessing was performed in MNE-Python, in-
cluding standard procedures such as band-pass filtering, re-
referencing to linked mastoids (HEOR and HEOL), artifact
removal using Independent Component Analysis (ICA), and
artifact identification based on correlations with recorded
signals (threshold > 0.95). Three band-pass versions were
created for comparison (0.5–40 Hz, 0.5–60 Hz, 0.5–100 Hz),
and a 50 Hz notch filter was applied to suppress line noise.
After preprocessing, we collect two sets of offline data (VI
and MI) for each participant, with three band-pass filtered
versions to enable the exploration of different high-frequency
(e.g., high gamma) components in subsequent analyses.

D. Robotics Platform

We employed a KINOVA GEN2 robot as the embodied
platform for systematic interaction. Two Intel RealSense
D435 cameras served as the primary sensors of the robotic
perception system. The camera positioned directly in front
of the workstation acted as the main sensor and was extrin-
sically calibrated in an eye-to-hand setup to support both
the perception system and model inference. An additional
camera, mounted vertically above the workstation, provided
a top-down view during online inference, enabling execution
monitoring and tracking of object interaction. Furthermore,
we installed an XWF-1080P6 RGB camera outside the
workstation to capture global information for the EEG-based
robotic grasping system.

IV. METHODOLOGY AND EVALUATION

Prior to deploying the online system, we trained and
validated our EEG decoding models using offline datasets
to establish a performance baseline.
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A. Model Selection

This study refers to the model selections and experimental
setups in EEG-ImageNet [37] with specific modifications
tailored to the task of decoding distinct intentions for real-
time robotic control driven by brain signals. The models
encompass both traditional machine learning algorithms,
including support vector machine (SVM), random forest, K-
nearest neighbors (KNN), decision tree, and ridge regres-
sion, as well as deep learning models such as multi-layer
perceptron (MLP), EEGNet [38], and RGNN [39]. MLP is
a fundamental feedforward neural network, while EEGNet
is a lightweight convolutional neural network specifically
designed for EEG signals, and RGNN is a recurrent graph
neural network that effectively captures the spatio-temporal
dependencies within EEG data.

B. Feature Extraction

Considering the cognitive processes involved in visual and
motor intention processing, we removed 10% of the signal
from both the beginning and end of each EEG segment to
ensure the neural signals were entirely confined to the task-
relevant period. The remaining signal segments were split
into 500 ms sliding windows with minimal overlap. The
segmented signals were used as features for EEGNet which
requires time-domain signals as input. For other models,
Differential Entropy (DE) [40] are extracted as the input
feature, which estimate P (f) for each frequency band using
the following formula:

P (f) = lim
T→∞

1

T
|XT (f)|2, (1)

where f denotes the (continuous) frequency (Hz), P (f)
represents the Power Spectral Density (PSD) at f , and
XT (f) is the Fourier transform of the truncated signal x(t)
over the interval [0, T ]. Then, DE is computed as

DE = −
∫
F
P (f) log

(
P (f)

)
df, (2)

where F is the frequency range of interest.
In addition to the traditional frequency bands (δ (0.5-

4 Hz), θ (4-8 Hz), α (8-13 Hz), and β (13-30 Hz)), we
specifically computed three new γ bands: (30-40 Hz), (30-60
Hz), and (30-100 Hz), tailored to different filtering strategies.
This customization was designed to more effectively capture
individual brain activity states for intention decoding. For
each EEG signal segment, we obtained differential entropy
values for each electrode and frequency band.

C. Experimental Setup

The MLP was implemented with two hidden layers, uti-
lizing the ReLU activation function. Both the EEGNet and
RGNN models were implemented strictly according to the
original architectures. To ensure model generalizability and
accurate evaluation, each participant’s dataset was partitioned
using stratified sampling into an 80% training set and a 20%
test set, which maintained a consistent class label distribu-
tion. Experiments were conducted on a server equipped with

TABLE I: Offline classification results for different models
in VP, VI and MI tasks. The mean decoding accuracy across
all subjects is reported for each model in different frequency
conditions across three tasks. Bolded values indicate the
highest accuracy in each row, while underlined values denote
the second highest accuracy.

Subject EEGNet MLP RGNN SVM DT

Visual Perception

00 0.4844 0.4767 0.4622 0.4067 0.4033
01 0.4911 0.4667 0.4278 0.4211 0.3711
02 0.4678 0.4522 0.4155 0.3833 0.3667
03 0.4978 0.4533 0.4322 0.4011 0.3911
04 0.4911 0.4889 0.4633 0.4633 0.3978

Average 0.4864 0.4676 0.4402 0.4151 0.3860

Visual Imagery

00 0.3979 0.4702 0.4451 0.4014 0.3694
01 0.3688 0.4069 0.3903 0.3694 0.3549
02 0.3639 0.4173 0.3868 0.3639 0.3451
03 0.3736 0.4757 0.4507 0.3826 0.4111
04 0.3694 0.4354 0.4299 0.4028 0.3521

Average 0.3747 0.4411 0.4206 0.3840 0.3665

Motor Imagery

00 0.7967 0.6983 0.6567 0.5850 0.5250
01 0.6933 0.6783 0.6567 0.6317 0.5550
02 0.7250 0.7267 0.7117 0.6867 0.5933
03 0.7850 0.6917 0.6700 0.6183 0.5850
04 0.8267 0.8167 0.7800 0.7017 0.6450

Average 0.7653 0.7223 0.6950 0.6447 0.5807

an NVIDIA A6000 GPU, leveraging Python 3.11.11 and
PyTorch 2.6.0. Each model was trained for 1000 epochs.

D. Experimental Results

a) Offline Performance: The offline data results for five
subjects under different models are summarized in Table I
and Figure 3, representing the mean decoding accuracy
across all subjects. The MLP model achieved the highest
average accuracy in the offline-VI task, with an accuracy
of 44.11%, while EEGNet achieved an average accuracy
of 76.53% in the offline-MI task. This performance dis-
parity can be attributed to the fundamental differences in
brain signal generation. Motor imagery tasks are known
to elicit strong and distinct event-related desynchroniza-
tion/synchronization (ERD/ERS) patterns in the µ and β
frequency bands, which are more readily detectable and
classifiable from EEG signals [41], [42]. In contrast, the
neural activity associated with visual imagery is more dis-
tributed and complex [43], [44]. Given that our objective
for the visual imagery task was to achieve object-level
differentiation for fine-grained, real-world items, the obtained
accuracy is a promising initial result.

b) Task Comparison: As shown in Figure 4, a com-
parison between the VI and MI tasks revealed significant
differences in performance. For the VI task, decoding accu-
racy for perception was consistently higher than for imagery.
This finding is in line with previous studies, suggesting that
direct visual stimuli evoke a stronger and more distinct neural
response compared to imagined visual stimuli [16], [36].
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(a) Visual Perception (b) Visual Imagery (c) Motor Imagery

Fig. 3: Offline results for three tasks: (a) Visual Perception, (b) Visual Imagery, and (c) Motor Imagery. For each
task, model accuracies for each participant are reported across frequency conditions.
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Fig. 4: Comparison of decoding accuracies for VI and MI.
Offline-MI accuracy is higher than that of VI, while within
the VI paradigm, VP slightly outperforms VI.

While the accuracy for the VI task may appear modest, it
is crucial to consider the specific context of our experimental
setup. At the system level, this level of accuracy makes the
task of grasping specific fruits using EEG signals feasible
and effective. Despite the lower direct visual decoding accu-
racy in the VI task, our results consistently surpass chance
levels, indicating the potential of using EEG-based system
to effectively support fruit-grasping tasks.

c) Average Evoked Responses: Figure 5 shows the
average event-related potentials (ERPs) for Sub00 during the
visual imagery task, illustrating how brain activity evolves in
response to different stimuli. Brain activity showed clear tem-
poral variation, with ERP differences across fruits indicating
that visual imagery tasks can modulate neural responses to
distinct stimuli and support classification. However, despite
this variation, a fairly consistent ERP pattern emerges across
signals for all three fruit conditions. This uniformity of the
brain’s response across categories also indicates the inherent
challenge in discriminating between conditions, emphasizing
the complexity of interpreting EEG signals in this context.

V. ONLINE DEMOSTRATION

Based on the collected offline data and pre-trained model,
we conducted online experiments for both VI and MI tasks.
The system was deployed within a real-time data transmis-
sion pipeline with EEG streamed from the NeuroHUB plat-
form to the robotic control system. All online experiments
were conducted on a laptop running Ubuntu 20.04, equipped
with an Intel i7-7700HQ CPU and an NVIDIA GeForce GTX
1070 GPU.

A. Online System Workflow

In the basic demonstration scenario, the task was to rec-
ognize different fruits and place them in the correct positions.

Fig. 5: Evoked EEG responses to fruit visual imagery.
Brain activity patterns during the visual imagery task for
distinct fruit stimuli: (a) Apple, (b) Banana, (c) Orange.

This demonstration highlights the system’s ability to translate
mental imagery into actionable robotic commands for the
selected object and the intended position. The online test
for our base demonstration followed a structured, multi-stage
workflow to ensure reliable human–robot interaction.

Preparation and Task Initiation. Each trial began with a
beep prompt. Participants performed an online-VI task for 15
seconds by mentally visualizing the target object, followed
by an online-MI task for 15 seconds by imagining left or
right hand movements, consistent with the offline protocol.

Neural Decoding and Inference. Real-time EEG was
streamed to pretrained VI and MI decoders. VI decoding
identified the target object, while MI decoding determined
the placement position, providing the robot with the infor-
mation needed to compute the optimal interaction location.

Action Execution. The system integrated VI (object) and
MI (position) results to guide grasp-and-place actions. Based
on these inferences, the manipulator grasped the target object
and placed it at the inferred location.

By converting neural intentions into robotic actions, the
system effectively bridged mental imagery with physical ex-
ecution, demonstrating reliable real-time interaction between
human cognition and the robotic platform.
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TABLE II: Online system results. Top: Base demo performance per subject on online VI/MI tasks across model/frequency
settings (e.g., 63.64 (RGNN/40) denotes accuracy using the RGNN model at 40 Hz). For each subject, we report the top-2
online accuracies and the overall mean. Bolded values indicate the row maximum, while underlined values mark the second
highest. Middle: Overall online system accuracy, with online VI/MI accuracy representing the mean top-2 accuracies across
all subjects. Bottom: Overall system runtime statistics.

Online Base Demonstration results

Subject VI-online Task MI-online Task

Top1 Acc. (%) Top2 Acc. (%) Overall Avg. (%) Top1 Acc. (%) Top2 Acc. (%) Overall Avg. (%)

01 63.64 (RGNN/40) 44.44 (RGNN/60) 47.14 75.00 (RGNN/60) 60.00 (MLP/40) 61.67
02 50.00 (EEGNet/100) 39.13 (MLP/100) 40.82 65.22 (MLP/100) 60.00 (MLP/40) 58.41
03 50.00 (MLP/60) 33.67 (RGNN/60) 38.89 60.00 (RGNN/100) 53.85 (RGNN/60) 54.62
04 37.50 (RGNN/100) 33.67 (MLP/60) 34.72 66.67 (MLP/60) 60.00 (MLP/40) 60.00

Online System Accuracy

Online VI avg Acc. (%) Query success rate (%) Online MI avg Acc. (%) Place success rate (%) System Accuracy (%)

40.23 76.11 62.59 100 20.88

System operation times (s)

Prepare VI Task VI Data Proc. VI Infer MI Task MI Data Proc. MI Infer Robot Exec. System Total

6.010 15.000 0.639 8.191 15.000 0.524 8.000 54.872 107.266

B. System Performance and Results

The online system results were evaluated with four par-
ticipants in a base demonstration scenario. Each participant
completed at least 50 iterations of the Online System Work-
flow to validate the entire system. Following the offline accu-
racy hierarchy, we tested each model-frequency configuration
(model/Hz), running at least 4-5 trials per configuration. A
model was not considered effective for online application if
its results showed no change. Models that performed best
in the offline setting did not necessarily yield the same
success rate in the online scenario, indicating that factors
such as model stability and other conditions also play a
role in real-time performance. After initial evaluation of all
configurations, models with relatively higher success rates
were selected for at least 15 online trials to assess the
system’s overall performance.

Table II presents the online system results in detail.
a) Detailed Online Performance Analysis: Upon com-

pleting experiments with the four participants, we selected
the top-2 online accuracies for both the VI and MI tasks,
along with their corresponding model/frequency configu-
rations. Among all participants, Sub01 demonstrated the
best overall online performance, with average accuracies
of 47.14% for the online-VI task and 61.67% for the
online-MI task. Online inference used a 10-second window
(3–13s) within the 15-second task. This temporal constraint,
combined with less refined nature of real-time preprocess-
ing, largely explains the reduced accuracies compared to
offline results. For Sub03 and Sub04, certain VI conditions
(model/Hz) exhibited systematic biases (e.g., apples misclas-
sified as bananas, bananas as oranges) and were therefore
excluded from the final analysis. Overall, the mean online
accuracy across all subjects, including configurations not
shown in the top-2, was 40.23% for VI and 62.59% for MI,
reflecting the impact of inter-subject variability, physiological
state, and the inherent characteristics of EEG signals in the

online setting. Notably, among the top-performing configura-
tions, MLP/100 and RGNN/60 consistently performed well,
suggesting promise for real-time use.

b) Overall System and Operational Performance:
From the system perspective, the online system accuracy
was 20.88%, as shown in the middle section of Table II.
This composite metric integrates visual recognition accuracy,
motor position recognition accuracy, and the robotic arm’s
object acquisition and placement success rates. While the
overall score is modest, it indicates that the primary bottle-
neck is converting noisy EEG signals into reliable commands
for robotic execution. Notably, the placement success rate
was 100%, showing that once the system correctly identified
the placement position, execution was consistently success-
ful. The average runtime per demonstration was 107.266 s,
with VI and MI decoding accounting for only 8 s, indicating
that most of the latency stems from task design and system-
level operations rather than model inference. Taken together,
these findings indicate that strengthening EEG decoding
robustness and optimizing task design are the most effective
levers for improving end-to-end performance.

TABLE III: Grasp Success Rates for Different Fruits

Fruit Catalogue Success Rate (%)

Apple 89.83
Banana 55.84
Orange 84.44

Overall Success Rate 76.11

c) Robotic Grasping and System Reliability: The aver-
age grasp query success rate was 76.11%, as shown in Table
III, which includes the success rates for different objects in
the fruit catalogue. Specifically, apples and oranges had high
success rates of 89.83% and 84.44%, respectively, while the
success rate for bananas was comparatively lower at 55.84%.
These discrepancies can be attributed to small inaccuracies
in the robotic arm’s execution, such as the ±2% error in
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Z-accuracy/Absolute Error of the Realsense D435 camera at
a 2-meter range, as well as slight deviations in calculating
the 6D pose for grasping. The relatively low success rate for
bananas was primarily due to the non-uniform shape of the
fruit, which presented a particular challenge. Despite these
challenges, the system maintained a reasonable overall level
of grasping performance.

(a) Hidden Object Interaction

(b) Direct Human-Robot Interaction

Fig. 6: Online Demos for extended application scenarios.
(a) Hidden Object Interaction: Using only VI-EEG, the
subject guides the system to identify and reveal a hidden
object, revealing an ability to decode mental imagery with-
out visual cues. (b) Direct Human-Robot Interaction:
By imagining the object and controlling hand movements
through Visual Imagery and Motor Imagery, the subject
interacts seamlessly with the robot, which places the object
directly into their hand.

C. Extended Application Scenarios

Beyond the base demonstration, we conducted a series
of online tests in various scenarios to further validate the
system’s robustness and adaptability. A key strength of
our system is its posture-independent operation. Tasks
rely solely on mental imagery without additional visual or
environmental cues, allowing the system to function in any
environment or orientation. In addition to validating the
system in a seated posture, we also successfully completed
online tests with subjects in a supine position, as shown
in the lower left corner of Figure 1.

To further assess the system’s performance in environ-
ments with no visual input, we designed specific experiments
to test its ability to decode neural signals and interact with
objects. Demonstrations are presented in Figure 6.
Hidden Object Interaction: EEG Decoding Without Visual
Input. The Hidden Object Interaction task was designed to
evaluate the system’s ability to decode EEG-derived mental
imagery and perform object manipulation without any visual
information. In this experiment, various objects were placed

on a table and concealed from the subject’s view with
lids. Without knowing the type or location of the objects,
the subject relied solely on mental imagery to guide the
system. EEG signals corresponding to the subject’s visual
imagination were decoded to identify the intended object,
and the robot then manipulated and revealed the object that
matched the subject’s mental imagery.
Direct Human-Robot Interaction: Object Manipulation
with Visual and Motor Imagery. The Direct Human-Robot
Interaction task aimed to evaluate the system’s ability to
support seamless, intuitive interaction between humans and
robots. In this scenario, the subject first visualized a target
by VI, and the system decoded the EEG signals to identify
the intended object. The subject then performed MI by
imagining left- or right-hand movements while extending the
corresponding hand. The system decoded these motor signals
to determine the intended hand position, enabling the robot to
grasp the target and place it directly into the subject’s hand.
This task demonstrated the integration of visual and motor
imagery for reliable, real-time human-robot interaction.

VI. CONCLUSIONS

In this study, we present a high-level cognitive control
paradigm for natural intention-driven BCI, where VI-EEG
decodes grasp intentions and MI-EEG infers target placement
positions. By combining offline pretraining with a real-
time framework, we achieved seamless mapping from visual
cognition to robotic actions, enabling accurate grasping and
reliable placement of real-world objects in online scenarios.
Although the system accuracy can still be improved, our
results demonstrate the feasibility of leveraging higher-order
cognitive states for intuitive brain–robot interaction. Current
limitations mainly include the intrinsic constraints of EEG,
insufficient feature separability of VI-EEG, and the need for
improved long-term robustness and generalizability, which
point to promising directions for future work.
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